MAT175 PROBLEM SET #1—SOLUTIONS KARE S. GJALDBAK

Problem 1. Find the limit, given it exists.
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Solution. (ii) The function is defined and continuous at = 1, so the limit is the
same as the function value.
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So the limit does not exist.

(vi) f(x) =z + 1 for all x in an interval around -1, so by Thm. 2.7
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(vii) Direct substitution yields 3. By Thm. 2.7
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Problem 2. Find the discontinuities (if any) for each of the functions below. Deter-
mine whether they are removable, and, in that case, (re)define the function value to
make it continuous at that point.
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Solution. (ii) f(x) is a combination of elementary functions, so it is continuous
everywhere in its domain. z can’t be smaller than 3 since that would cause a negative
under the square root. z = 4 yields a zero divisor and is the only point > 3 where f
is not defined, hence the only discontinuity. We have

z—4 r—4 ver—3+1

lim ————— = lim

iz —3—1 a+iz-3-1 Vz—3+1

@ H(T-3+41)
e=d (v —3—1)(Vr —3+1)

(z—4) (Ve —3+1)

lim
z—4 r—3—1
~ lim (z—4)(v/x —3+1)
r—4 r—4
= lini(\/x——3+ 1)
=v4—-3+1=

By setting f(4) = 2, f is made continuous at = 4, so this is a removable discontinuity.
(iii) f(z) is a rational function, so it is continuous everywhere in its domain. z = +1

yield a zero divisor. These are the only discontinuities.

Jim, /(@) = .

Since the limit doesn’t exist, the discontinuities are non-removable.

(iv) z = 1 yields a zero divisor. This is the only discontinuity. Since the numerator
is 2 £ 0 at x = 1, there is a vertical asymptote at x = 1, so this is a nonremovable
discontinuity.
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Problem 3. For each of the functions below, determine the value k for which the
function is everywhere continuous.
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Solution. (i) 35214%“’ only has a discontinuity at x = —1. The limit at this point is
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so if we put k = 2, we have
lim f(z) = f(-1),
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which means that f(z) is continuous at x = —1, hence everywhere.

Problem 4. Find all the vertical asymptotes (if any) of the functions below.
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Solution. (i) The numerator is nonzero, so there are vertical asymptotes where the
denominator is zero. That is

=204+ 1=(z—1)>=0,
sox = 1.
(iv) The denominator is zero at
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At x = —1, the numerator is zero also. This is a removable discontinuity, so not a
vertical asymptote. The only vertical asymptote is x = 1.

Problem 5. Find the one-sided limit, given it exists (indicate unboundedness by
+00).
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Solution. (ii) When x approaches 1 from the left, x — 1 < 0, so
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When x approaches 1 from the right, x — 1 > 0, so
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